ELASTOPLASTIC BEHAVIOR OF A REINFORCED LAYER

Yu, V, Nemirovskii

The mechanical properties of a reinforced material depend on the properties of the binder, the ma-
terials of the reinforcing elements, their percentage contents, and nature of the reinforcement. Therefore,
in practice each class of reinforced material requires special analysis. Here the primary objective is to
obtain the relations describing the connections between the stresses and strains during deformation of the
reinforced material.

There are two approaches to the construction of these connections: the phenomenological approach,
in which the reinforced medium is considered a homogeneous monolithic anisotropic medium [1, 2], and
the approach based on structural analysis of the reinforced material in accordance with the nature of the
material structure and the mechanical properties of its constituent components [3, 4]. Within the elastic
limits, if we neglect some subtle effects (stress concentration in the vicinity of the reinforcing elements,
nonuniformity of the deformations between these elements, and so on), both approaches yield essentially
the same coupling equations between the average stresses and strains and in this sense are equivalent,

The phenomenological approach to the formulation of the equations governing the elastoplastic be-
havior of anisotropic media has been used in several studies, for example [5-7]. However, the equations
obtained should apparently be considered applicable to "physically anisotropic media™ whose anisotropy is
a consequence of their crystalline structure. As for the structurally anisotropic media, including the re-~
inforced materials, beyond the elastic limit the specific characteristics of each type of structural aniso-
tropy affect the form of the plasticity conditions [8-10] and also affect the nature of the coupling equations .
between the stresses and strains, Therefore, each type of structural anisotropy must be analyzed sepa-
rately. Therefore, beyond the elastic limit only a structural analysis of the reinforced material on the
basis of a model reflecting its specific characteristics permits obtaining the sought coupling relations be-
tween the stresses and strains. Another advantage of structural analysis is that it permits evaluating the
nature of the operation of each of the elements of the composite and thereby opens up a way to goal-directed
regulation of the nature of the reinforcement in order to improve the strength properties of the reinforced
materials.

In the following we use the model of [10] and some additional simplifying assumptions to analyze the
elastoplastic behavior of a reinforced layer subject to forces in its plane,

1. By a reinforced layer we mean a comparatively thin plate consisting of an isotropic layer with a
reinforcing layer embedded in it (Fig. 1). The embedded layer is a grid of slender one-dimensional fila~
ments arranged in directions which form the angles a(n=1, 2, ..., N) with the direction 1,

We assume:

1) the material of all the elements comprising the composite is elastoplastic and in the general case
is different for each element;

2) the number of reinforcing elements is sufficiently large that the material of the composite can be
considered quasihomogeneous;

3) the distance between the reinforcing elements is sufficiently large and at the same time suffi-
ciently small in comparison with the plate dimensions that local effects near the filaments and irregularity
of the deformation between filaments can be neglected;
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4) the bonding of the elements of the composite is ideal, i.e., there is no slippage between the rein-
forcing elements and the binder;

5) each filament is capable of withstanding both tensile and compressive forces when embedded in
the binder material,

However, under the action of a compressive force some form of instability may arise and therefore
the yield and ultimate limits (as well as the strain-hardening modulus for strain-hardening materials) in
tension and compression are considered different. The Young's moduli are assumed to be the same in
tension and compression;

6) the material of the isotropic binder obeys the deformation theory of plasticity with the same char-
acteristics in tension and compression and for simplicity is assumed to be incompressibleinboth the elas-
tic and plastic regions. When necessary, the incompressible requirement can be disregarded and we can
use a flow type theory rather than deformation theory.

Let wy (=1, 2, ..., N) be the specific concentrations in the plane of the layer of the reinforcing fila-
ments forming the angles &y with the direction 1; h is the thickness of the reinforced layer; and w, is the
reinforcing layer concentration in the direction of the plate thickness. Then in the 1~2 orthogonal system
the components of the internal forces in the composite layer will be

N
ty= 00" 4+ D) OnSalinkin (i, =1,2% k=1,2,3)
r =1 (1.1)
s T . N
= % , lg= ; ,  lin=c0SCph, Il =sina,

0|, <M a=1— 0, 0, =n,F, | AFh, 0,==08/h

Here Tjj are the forces, O’ijo are the stresses in the filler, o, are the stresses in the reinforcing
filaments, Fp are the cross-section areas of the reinforcing elements, and np is the number of reinforcing
element filamenis on segments AT of length I (Fig. 2).

On the basis of the assumption of no slippage, for small deformations we obtain the following rela-
tions between the deformations £, of the reinforcing elements and the deformations of the filler layer:

€)== 8llln2 + 82lzn2 + 83l1nlzn (1 nz)

Here €4, €4 are the filler layer deformation components in directions 1 and 2, respectively, and &,
is the shear deformation.,

In accordance with the assumptions adopted above, the internal stresses of the composite layer ele-
ments are connected with the deformations by the following relations:

on’ =45 E, (e + 1ae,), 022’ =3 E, (2, -+ Yy £)) (1.3)
0120 —_ 1/3 E0831 0,= EtCnan

Here E¢, Ecn™ are the secant moduli of the filler and reinforcing element materials in tension (plus)
and compression (minus).

If all elements of the composite remain elastic for the given loads tk k=1, 2, 3), then all the secant
moduli equal the corresponding Young's moduli

Ec:Ev EcnizEn (1.4)

Then, substituting (1.3) into (1.1), we obtain the following relationships between the forces tk and de-~
formations e:

t= " Cem " €, &= ” bkm ” tv ” bkm “ == “ Aim ”hl
t= " tl? th t3”,7 g = "811 €, &3 H, (k, m= 1, 2, 3) (1,5)

The prime on the matrix indicates the transposition operation.

The coefficients of the matrix || ayy || are

N . N
ai; = 4/3a-E + Z (DnEnlin47 Q13 = A9y = 2/3Ed + Z’ mnEnlinlg‘n.-
n==1 =1
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N N
@ =y = D 0pBnllilin, G5 =s0E + D 0nBnlinlin, (i, 7=1,2 4] (1.6)

==l n=1

Substituting the deformation components from (1.5) into (1.3) and taking (1.4) into account, we find
the internal stresses in all the elements composing the reinforced layer. With their aid we can find the
loads for which any particular elements change from the composite into the plastic state. Thus, the re-
inforcing elements remain elastic if the following inequalities are satisfied:

3
~—6n~ < En[ 2 ti (Oiplan® + barlan® +- bakllnlzn)]<‘ 6, (n=1,2,..., N) 1.7
k=1

and the binder layer remains elastic if the following inequality is satisfied:
011% — 0%,0%; + 025" + 304,%% << 0,? (1.8)
where we substitute into this equality in place of Gij" the expressions (1,3) with account for (1.4) and (1.5).

In (1.7), (1.8), the stresses 0, 0,* denote respectively the yield limits of the binding and reinforcing
element materials in tension or compression,

Violation of any of the inequalities (1.7), (1.8) leads to the development of plastic deformations in the
corresponding reinforcing elements or filler. Assume, for example, that for some combination of forces
tk such that

fn(th ly, ta) =0 : (lng)

any of the inequalities (1.7) is violated. Then we can assume that (1.9) in the ty, t,, t; stress space de-
fines the yield surface for the reinforced material with composite elements having elastoplastic proper-
ties. In fact, there are no residual deformations for all stresses within this surface after unloading of the
layer. Residual deformations remain for stresses outside this surface in the reinforced layer after re-
moval of the load. We also obtain surfaces which are analogous in meaning in stress space in cases in
which the other inequalities (1.7) or (1.8) are violated (separately or together). Thus, the combined yield
surface for the reinforced material in stress space consists of a large number of "pieces" of different
analytic surfaces and its shape depends in an essential fashion on the nature of the reinforcement and the
properties of the composite elements.

Moreover, the form of the coupling equations for the elastoplastic behavior of the reinforced layer
also depends significantly on the nature of the reinforcement. For example, suppose the plasticity con-
dition has the form (1.9) and the strain diagram of the reinforcing elements has a linear hardening seg-
ment, Then we have for stresses located near but outside the surface (1.9)

E,=E, Ecpt: Ey, (p=1,2,...,N, pFn) (1.10)

and the strain law in the elements of the angled reinforcement with angle o, has the form
6n = Eipte, 6,7 (1 — BT/ K, (1.11)

Here the upper or lower signs are taken depending on whether the right or left side of the inequality
(1.7) is violated for stresses satisfying (1.9).

For definiteness, we take (1.11) with the upper signs. Then, substituting (1.3) and (1.11) with ac-
count for (1.2) and (1.10) into (1,1), we obtain the following relations between the forces and deformations:

' =laimle,  e=[bmlt, [Bml=lam[, ¢ =]t BT m=1,29 (1.12)
' =t — Balin% by =ty — Bulinlan, Br= @5, [1— B’ Byl
In (1.12) the coefficients of the matrix || a', || have the same form as those of the matrix || apy, ||
from (1.6), if in the latter Eq is replaced by Eg‘q for n=q, where q is the number of the filament family
which has changed into the plastic state.

The relations (1.12) describe the elastoplastic behavior of the reinforced layer in the case in which
the plasticity condition for the layer has the form (1.9). These relations will be valid until some other of
the inequalities (1.7) or (1.8) is violated, provided that bik and ty in the latter are replaced respectively
by bik', tk' (i=1, 2; k=1, 2, 3). In the case of violation of inequalities of the type (1.7), the subsequent
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modifications of the equations can be accomplished just as in obtaining {1.12), and as a result we shallhave
linear equations similar to (1.12) every time, If the material of the reinforcing elements is ideally elasto-
plastic, the corresponding tangent moduli E¢f should be equated to zero in (1.12) and in the similar equa-
tions. In this case, in contrast with the isotropic or "physically anisotropic" ideally plastic layer, the
reinforced layer with ideal elastoplastic reinforcing elements provides one-to-one dependence between the
stresses and strains for inelastic deformations as well.

If the inequality (1.8) is violated first, while (1.7) remains valid, plastic deformations begin in the
filler layer and are accompanied by elastic deformations in the reinforcing elements. Then we must take

Ept=En, E,=®k), &=2; ) 3le® + 8, + 57 + Y52l s (1.13)

Here ¢ is the strain intensity in the filler layer, and ® is a function determined from the plasticpart
of the stress-strain diagram.

Substituting for the secant moduli (1,13) the expressions (1.3) and (1.2) into (1.1), we obtain

Iy = @118 + @128 + ay385 -+ Y5O {e) — Ele, -+ Yyey)
by == Qa1 F @598y + g8y -+ g [@(e) — E (g, - seq)
ly == Q1381 - Ggs8y -+ agses + VslD(e) — Ele, (1.14)

In contrast with (1.12), these equations are essentially nonlinear even for linear hardening of the
filler material. If the filler material is ideally plastic with the yield point oy, in (1.14) we must take ®(¢) =
0'0/ e. In this case (1.14) define a one-to-one relationship between ty and &k, provided Ay =0 k, m=1,

2, 3).

If the inequality (1.7) is violated first, so that plastic deformations appear in the reinforcing ele-
ments which form the angle @, with the direction 1, and the deformation of the reinforced material takes
place in accordance with the relations (1.12), and thenthe inequality (1.8} is violated for some values tx,
subsequently the deformation law will have the form (1.14) if in place of tk, axm we substitute tx' and
akm', respectively.

Relations of the type (1.12) and (1.14) not only describe the nature of the elastoplastic layer deforma-
tion, but together with (1.2) and (1.3) they also determine the effectiveness of the operation of all the ele-
ments of the composite, Depending on which elements of the composite deform plastically, these relations
have a linear or nonlinear nature; therefore, in many cases some indirect information on the effective-
ness of a given type of reinforcement can be obtained directly from the experimental deformation diagrams
of the materials or structures.

2. As an example of the use of the relations obtained, we shall examine the problem of stretching
by the force ty of a layer reinforced by unidirectional filaments whichformsthe angle oy =& with the load-
ing direction., For simplicity we shall assume that the material of all elements of the composite is ideally
elastoplastic. Then in the case in question we must take

L=1=0 N=1, E =0, ® () =0,/¢

Therefore, we obtain in the elastic region

hoo_ o _ B B2 _ Mo A (2.1)
aBe; ' aFey ~ 2Ea 81, e A e A
ot Ay A ﬁ:i@_ﬂ o’ _ B (2.2)
Egy 3 2A )7 Eg,y 3\2 AJ? Eeq 3A
5 — ap A — arey — aihs’ & — 2A cos? o — Ag sin 20 — 2A; sin? o
—' aEA R A
Qg2 Gr3 Qig Q23 . aze a1z
A= @ ass |’ TV lam assl|’ T2 |awms an (2.3)

Figure 3 shows as a function of & the quantities t;* =t,/aFe, and &,/¢&, calculated using (2.1) for
wE;/aE =1, 5, 10,

In this case the plasticity condition for the reinforcing elements has the form

+
12 — 28Esy (2.4)

ass  — B1FEa1se
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The upper signs correspond to g(;) >0 ((4) is the deformation of the reinforcing elements calculated
using (1.2) with account for (2.1)), the lower signs are for € (1 <0. We further assume for definiteness that
oyt =0y=. Then it is not difficult to see that we need take only the upper signs in (2.4). The dashed curves
in Fig. 4 show t;/a0, as a function of @, calculated forw,0,*/a0,=0.5, 1.0, 2.0, and wE/Ea=5.

For load values located between the dashed and dotted curves in Fig. 4, the stresses in the reinforc~
ing elements remain constant and equal to 0y". The relationships between the force and deformations have
the form

aEe, = t; — 0,07 (cos’a — Uy sin’a), aBe, = — pt; — 0,017 (sin’a — '/, cosar)

aFey =3/, w0, sin2aq (2.5)

Therefore, the shear deformation is independent of the load while the "Poisson coefficient,” con-
versely, depends on the load.

The relations (2.5) are valid up to load values at which plastic deformations arise in the binder. The
corresponding load values are found from the equation

{t; — 0007 cos?a)? + (¢ — ©,0;* cosPot)w,0,* sin®a - (0,0,°)2 sin o 4 Yy(@,0,%)? sin®20 = (a0,)? (2.6)

The dependence of ti/O‘ann o, calculated with the aid of this equation fory 01+/a00:0.5, 1.0, 2.0, is
shown by the dotted curves in Fig, 4. The reinforced material with ideally plastic composite elements can-
not withstand large loads.

Formulas (2.1) and (2.5) define the stress-strain diagram of the material in those cases in which
plastic deformations first develop in the reinforcing elements. The corresponding diagrams forw, E;/aE = 5,
w;0,Ya0y=0.5 (solid) and 1.0 (dashed),and & =0, 20°are shown in Fig. 5. The horizontal segments cor-
respond to the limit loads for the layer,

Also possible is the case in which plastic deformations appear first in the binder, while the rein-
forcing elements remain elastic. Then in (1.10) we must replace the inequality symbol by an equality sym-
bol, and after substitution herein of (2.2), we obtain the relation

2t / acy = V 3OA(A* — AA; + APy 2.7
This relation is shown by the solid curve in Fig. 4 for wE,;AE =5.

Yor loads exceeding the values (2.7), using for simplicity the ideally plastic material assumption,
we have the following relationships between the force t, and the deformations €y, €4, €5

2a(2e; + &,)0, + 3w,Ege, cos’a = 3he, 2a(2e, 1+ )0, + 30 Eee; sin*a =0,
2ae50, + 3w, Eiee; sin 2 =0 (2.8)

By simple transformations we obtain from these equations the following relations:

6tga(l — Bi, / 04a) +(tg?x — 2) &, /e =0

a1 (—Ea—tga—-,?.), al———L[2<B—tl—— 1)——:%tgoc_l

A asy

. 1 [ 1 iy
4= 4—-(m[—;—tga(tg’oc+4) —2(tg?a — 2)], B=im [12 +<_z%>2 (tg% & + 4)]l (2.9)
The stresses in the reinforcing elements are
®;0; / ac, = A /B (2.10)

Formulas (2,9) define & unique relationship between the force t; and the deformations &4, €y, €5, in
spite of the fact that the binder is ideally plastic. We also emphasize that in contrast with (2.5) this re-
lationship is nonlinear. Figure 6 shows the stress-strain diagrams calculated using (2.1) and (2.9) for

Eloy=40, 0,E;/ aE =15

The relations (2.9) will be valid up to those values of t, for which the stresses in the reinforcing ele-
ments reach the elastic limit. This load value will be limiting for the given material. A horizontal seg-
ment appears on the stress-strain diagram at this load. In Fig, 6 the straight lines correspond to the so~
lution (2.1) and the curved segments correspond to the solution (2.9). The transition points are defined
using (2.7},
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In concluding this section, we note that (2,1) and (2.5) can also be used to describe the stress-strain
diagram of a material reinforced by ideally brittle filaments. In this case (2.4) defines the loads at which
filament breaking takes place. If the yield condition for the filler is not violated at these load values, the
subsequent behavior of the material is characterized by an instantaneous jump on the diagram, described
by (2.5) for o;7 =0,

3. As the second example, we shall analyze the shear of a unidirectionally reinforced material. In
this case

ti=1=0, N=1{, o=a EF=0 @@ =0/¢

In the elastic region we have

2] —5 . E1d1 . on® 215 (201 + Ay)
aBes 0 OV=TGEs B TE = 35AEa
500 2280 At 5120 s (3.1)
E — T 3ESAa ¢ E T 38Ea
Here

. agsA — a4 s, {A sin 20 — 2A; cos? & — 2A, sin® a)
o= aEA o b= A

— 211 G2 , Ay = @13 G132 , Ap = a1 a13

d21 Qa2 Qa3 dap @21 Q23

Figure 7 shows curves of the shear modulus versus «, calculated using (3.1) for wE,/aFE =1, 5, 10,
In this case the plasticity condition for the reinforcing elements has the form
t3 fa 0y = Edor* [ E1d,0¢ (3.2)

Curves of this relation for wyE,/aE =5 and w101+/a00:0.5, 1.0 are shown dashed in Fig. 8, If the loads
exceed the values (3.2), the elastoplastic behavior is defined by the relations

aBe; = — wio1” (cos’ a — Yasin?a), aFey= — wisy* (sina — /s cos® a), aEes =3 [¢3 —1/> w1617 sin 2a],

acsl; = —wmo1t cos’a, @6, = — w1t sin’w,  as,, =ty —1, oyc1* sin 20 (3.3)

Relations (3.3) are valid as long as the stresses 0y, 0,,0, 0y,? do not violate the inequalities (1.10).
The corresponding limit load is defined by the equality
LR L NI Vs [1 — (_“il_‘sl;>2 (cos* o — sin® & cos? o + sin*oc}l/2
asg 2 asg 3 \ aSp
Curves of this load as a function of a for wo;%/a0,=0.5, 1.0 are shown dotted in Fig. 8. The solid
curves in Fig. 8 show the loads versus « for which plastic deformations arise first in the binder. We ob-

tain the corresponding equations for these curves if in (1.8) we replace the inequality symbol by an equality
symbol and then substitute therein the expressions (3.1) for oy;%, 0y,°, oy,

We obtain the equations for the elastoplastic behavior of the reinforced layer for plastic deforma-
tions of the binder and elastic deformations of the reinforcing elements in this case from (1.17) for ty=ty=0
and @ (e) = g,/ 6.

Similar solutions can be obtained for any other types of loading or reinforcement of the layer,

In conclusion, we note that the ideally plastic material model used in the calculations was employed
for definiteness and to emphasize certain peculiarities of the relationships between the stresses and de-
formations during elastoplastic deformation of reinforced materials, If necessary, the corresponding cal-
culations can be made without difficulty for any concrete hardening law,
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